skip to main content


Search for: All records

Creators/Authors contains: "Butnor, John R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shifting range limits are predicted for many species as the climate warms. However, the rapid pace of climate change will challenge the natural dispersal capacity of long-lived, sessile organisms such as forest trees. Adaptive responses of populations will, therefore, depend on levels of genetic variation and plasticity for climate-responsive traits, which likely vary across the range due to expansion history and current patterns of selection. Here, we study levels of genetic and plastic variation for phenology and growth traits in populations of red spruce ( Picea rubens ), from the range core to the highly fragmented trailing edge. We measured more than 5000 offspring sampled from three genetically distinct regions (core, margin and edge) grown in three common gardens replicated along a latitudinal gradient. Genetic variation in phenology and growth showed low to moderate heritability and differentiation among regions, suggesting some potential to respond to selection. Phenology traits were highly plastic, but this plasticity was generally neutral or maladaptive in the effect on growth, revealing a potential liability under warmer climates. These results suggest future climate adaptation will depend on the regional availability of genetic variation in red spruce and provide a resource for the design and management of assisted gene flow. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (Part II)’. 
    more » « less
  2. null (Ed.)
    Red spruce (Picea rubens Sarg.) is a coniferous tree with a highly fragmented range in eastern North American montane forests. It serves as a foundational species for many locally rare and threatened taxa and has therefore been the focus of large-scale reforestation efforts aimed at restoring these montane ecosystems, yet genetic input guiding these efforts has been lacking. To tackle this issue, we took advantage of a common garden experiment and a whole exome sequencing dataset to investigate the impact of different population genetic parameters on early-life seedling fitness in red spruce. The level of inbreeding, genetic diversity and genetic load were assessed for 340 mother trees sampled from 65 localities across the spe- cies range and compared to different fitness traits measured on 5100 of their seedlings grown in a controlled environment. We identified an overall positive influence of genetic diversity and negative impact of genetic load and population-level inbreeding on early-life fitness. Those associations were most apparent for the highly fragmented populations in the Central and Southern Appalachians, where lower genetic diversity and higher inbreeding were associated with lower germination rate, shorter height and reduced early-life fitness of the seedlings. These results provide unprecedented information that could be used by field managers aiming to restore red spruce forests and to maximize the success of future plantations. 
    more » « less
  3. Understanding the factors influencing the current distribution of genetic diversity across a species range is one of the main questions of evolutionary biology, especially given the increasing threat to biodiversity posed by climate change. Historical demographic processes such as population expansion or bottlenecks and decline are known to exert a predominant influence on past and current levels of genetic diversity, and revealing this demo‐genetic history can have immediate conservation implications. We used a whole‐exome capture sequencing approach to analyze polymorphism across the gene space of red spruce (Picea rubens Sarg.), an endemic and emblematic tree species of eastern North America high‐elevation forests that are facing the combined threat of global warming and increasing human activities. We sampled a total of 340 individuals, including populations from the current core of the range in northeastern USA and southeastern Canada and from the southern portions of its range along the Appalachian Mountains, where populations occur as highly fragmented mountaintop “sky islands.” Exome capture baits were designed from the closely relative white spruce (P. glauca Voss) transcriptome, and sequencing successfully captured most regions on or near our target genes, resulting in the generation of a new and expansive genomic resource for studying standing genetic variation in red spruce applicable to its conservation. Our results, based on over 2 million exome‐derived variants, indicate that red spruce is structured into three distinct ancestry groups that occupy different geographic regions of its highly fragmented range. Moreover, these groups show small Ne , with a temporal history of sustained population decline that has been ongoing for thousands (or even hundreds of thousands) of years. These results demonstrate the broad potential of genomic studies for revealing details of the demographic history that can inform management and conservation efforts of nonmodel species with active restoration programs, such as red spruce. 
    more » « less
  4. Flotation of seeds in solvents is a common means of separating unfilled and filled seeds. While a few protocols for processing red spruce (Picea rubens) seeds recommend ethanol flotation, delayed and reduced germination have been reported. We conducted an ethanol bioassay on seeds previously stored at -20°C to quantify the concentration required to separate red spruce seeds and the effects on germination. We used seeds from Canada (CAN) that had been exposed to ethanol during processing, and seeds from the United States (USA) that had not been exposed to ethanol during processing. Seeds were exposed to 10 ethanol concentrations (10-100%) and deionised water was used as a control. The effective concentration of ethanol for 50% (EC50) of the seeds to sink ranged by source from 70.9 to 90.7%, with all seeds sinking in 100% ethanol. The use of less than 100% ethanol is not adequate for seed separation, as some filled seeds could float and be mistakenly categorised as unfilled. The mean EC50 of ethanol that inhibits germination was significantly higher for USA sources (52.7%), than for CAN sources (40.8%; P < 0.05). Ethanol concentrations that inhibited germination coincided with delays in germination. The mechanism of phytotoxity was not determined; however, damage during extraction, desiccation and storage at -20°C are potential sources. We recommend separating red spruce seeds by physical means rather than ethanol flotation to avoid potential negative impacts on germination. 
    more » « less